Resettably Secure Computation
نویسندگان
چکیده
The notion of resettable zero-knowledge (rZK) was introduced by Canetti, Goldreich, Goldwasser and Micali (FOCS’01) as a strengthening of the classical notion of zero-knowledge. A rZK protocol remains zero-knowledge even if the verifier can reset the prover back to its initial state anytime during the protocol execution and force it to use the same random tape again and again. Following this work, various extensions of this notion were considered for the zero-knowledge and witness indistinguishability functionalities. In this paper, we initiate the study of resettability for more general functionalities. We first consider the setting of resettable two-party computation where a party (called the user) can reset the other party (called the smartcard) anytime during the protocol execution. After being reset, the smartcard comes back to its original state and thus the user has the opportunity to start interacting with it again (knowing that the smartcard will use the same set of random coins). In this setting, we show that it is possible to secure realize all PPT computable functionalities under the most natural (simulation based) definition. Thus our results show that in cryptographic protocols, the reliance on randomness and the ability to keep state can be made significantly weaker. Our simulator for the aforementioned resettable two-party computation protocol (inherently) makes use of non-black box techniques. Second, we provide a construction of simultaneous resettable multi-party computation with an honest majority (where the adversary not only controls a minority of parties but is also allowed to reset any number of parties at any point). Interestingly, all our results are in the plain model.
منابع مشابه
Efficient Resettably Secure Two-Party Computation
In 2000, Canetti, Goldreich, Goldwasser and Micali (STOC’00) proposed the notion of resettable zero-knowledge, which considers the scenario where a malicious verifier can reset the prover and force it to reuse its random tape. They provided a construction that resists such attacks, and in the following, the notion of resettability was considered in various other scenarios. Starting with resetta...
متن کاملSimultaneous Resettability from Collision Resistance
In FOCS 2001, Barak, Goldreich, Goldwasser and Lindell conjectured that the existence of ZAPs, introduced by Dwork and Naor in FOCS 2000, could lead to the design of a zeroknowledge proof system that is secure against both resetting provers and resetting verifiers. Their conjecture has been proven true by Deng, Goyal and Sahai in FOCS 2009 where both ZAPs and collision-resistant hash functions ...
متن کاملFounding Cryptography on Tamper-Proof Hardware Tokens
A number of works have investigated using tamper-proof hardware tokens as tools to achieve a variety of cryptographic tasks. In particular, Goldreich and Ostrovsky considered the problem of software protection via oblivious RAM. Goldwasser, Kalai, and Rothblum introduced the concept of one-time programs: in a one-time program, an honest sender sends a set of simple hardware tokens to a (potenti...
متن کاملResettably-Sound Resettable Zero Knowledge in Constant Rounds
In FOCS 2001 Barak et al. conjectured the existence of zero-knowledge arguments that remain secure against resetting provers and resetting verifiers. The conjecture was proven true by Deng et al. in FOCS 2009 under various complexity assumptions and requiring a polynomial number of rounds. Later on in FOCS 2013 Chung et al. improved the assumptions requiring one-way functions only but still wit...
متن کاملResettably-Sound Resettable Zero Knowledge Arguments for NP
We construct resettably-sound resettable zero knowledge arguments for NP based on standard hardness assumption (the existence of claw-free permutations) in the plain model. This proves the simultaneous resettability conjecture posed by Barak et al. in [FOCS 2001]. Our construction, inspired by the paradigm for designing concurrent zero knowledge protocols, makes crucial use of a tool called ins...
متن کامل